An Lp-Lq-Version of Morgan's Theorem for the n-Dimensional Euclidean Motion Group
نویسندگان
چکیده
An aspect of uncertainty principle in real classical analysis asserts that a function f and its Fourier transform ̂ f cannot decrease simultaneously very rapidly at infinity. As illustrations of this, one has Hardy’s theorem [1], Morgan’s theorem [2], and BeurlingHörmander’s theorem [3–5]. These theorems have been generalized to many other situations; see, for example, [6–10]. In 1983, Cowling and Price [11] have proved an Lp-Lq-version of Hardy’s theorem. An Lp-Lq-version of Morgan’s theorem has been also proved by Ben Farah and Mokni [7]. To state the Lp-Lq-versions of Hardy’s and Morgan’s theorems more precisely, we propose the following. Let a,b > 0, p,q ∈ [1,+∞], α≥ 2, and β such that 1/α+1/β = 1. If we consider measurable functions f on R such that
منابع مشابه
An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملAN LP-LQ-VERSION OF MORGAN’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM
n this article, we prove An Lp-Lq-version of Morgan’s theorem for the generalized Bessel transform.
متن کاملROSENTHAL’S THEOREM FOR SUBSPACES OF NONCOMMUTATIVE Lp
We show that a reflexive subspace of the predual of a von Neumann algebra embeds into a noncommutative Lp space for some p > 1. This is a noncommutative version of Rosenthal’s result for commutative Lp spaces. Similarly for 1 ≤ q < 2, an infinite dimensional subspace X of a noncommutative Lq space either contains lq or embeds in Lp for some q < p < 2. The novelty in the noncommutative setting i...
متن کاملAn Lp-Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp −Lq version of Hardy’s theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1 ≤ p, q ≤ ∞, and f a K-bi-invariant measurable function on G such that h−1 a f ∈ Lp(G) and eb‖λ‖ (f )∈ Lq(a∗ +) (ha is the heat kernel on G). We establish th...
متن کاملHARDY’S THEOREM FOR THE n-DIMENSIONAL EUCLIDEAN MOTION GROUP
An uncertainty principle, due to Hardy, for Fourier transform pairs on R says that if the function f is “very rapidly decreasing”, then the Fourier transform cannot also be “very rapidly decreasing” unless f is identically zero. In this paper we state and prove an analogue of Hardy’s theorem for the ndimensional Euclidean motion group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007